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Thermally sustained structure in convectively unstable systems

Robert J. Deissler
Institute for Computational Mechanics in Propulsion (ICOMP),Ohio Aerospace Institute,
NASA Lewis Research Center, Cleveland, Ohio 44135
(Received 26 July 1993)

The complex Ginzburg-Landau equation with a thermal noise term is studied under conditions when
the system is convectively unstable. Under these conditions, the noise is selectively and spatially
amplified giving rise to a noise-sustained structure. Analytical results, applicable to a wide range of
physical systems, are derived for the variance, and the coefficients and thermal noise term are deter-
mined for Taylor-Couette flow with an axial through-flow. Comparison is made to recent experiments.
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Consider the equilibrium state of some spatially ex-
tended system and a small spatially localized perturba-
tion about this state. If the perturbation grows at a fixed
location in space, the equilibrium state is absolutely un-
stable. However, if the perturbation is convected with
the mean flow such that it grows only in a moving frame
of reference, eventually damping at any fixed location,
the equilibrium state is convectively unstable [1-5]. Al-
though little attention has been given to this distinction
until fairly recently, it is an important distinction since
these two types of instabilities give rise to qualitatively
very different behavior. In a convectively unstable sys-
tem external noise is selectively and spatially amplified
giving rise to spatially growing waves and a
noise-sustained structure [2-4], a concept introduced with
studies of the complex Ginzburg-Landau equation. In
contrast, in an absolutely unstable system structure is
sustained by the internal dynamics.

Since noise—whether thermal or otherwise—is an ele-
ment common to all physical systems and since any sys-
tem with nonzero group velocity will be convectively un-
stable sufficiently close to and above onset on the instabil-
ity [4,6], one would expect noise-sustained structure to be
very common in nature. For example, in addition to be-
ing important in classic open-flow fluid systems such as
jets, wakes, and channel flow [1-5,7], the above concepts
are important in such diverse systems as film flow [8,9],
binary fluid convection [6,10], sidebranching in dendrities
[4,11,12], and traffic flow [4]. Considering the general na-
ture of these concepts, there are undoubtedly systems in
other fields to which they would also apply.

Since the complex Ginzburg-Landau (CGL) equation is
a generic equation which describes systems near onset of
an instability, it has proven to be an ideal system in
which to explore these concepts. Also, since the equation
is rather simple in form, there is some hope for deriving
analytic results. Considering the fact that, up to this
point, no analytic results have existed for convectively
unstable systems in the presence of spatially extended
noise, analytic results should prove very useful and would
provide further insight into the interaction of noise with
convectively unstable systems.

Recently, noise-sustained structure has been studied
experimentally in Taylor-Couette flow with an imposed
axial through-flow [13-15]. It was found that under con-
vectively unstable conditions, noise-sustained structures
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of traveling vortices exist. This system is very useful for
study in that, for sufficiently small Reynolds numbers,
noise-sustained structure exists in a parameter regime
where the flow is laminar and axisymmetric, thus allow-
ing for a great deal of experimental control. Further, the
CGL equation is valid for this system in a parameter re-
gime of experimental interest.

Since in a convectively unstable system noise is
amplified exponentially in space, even extremely low lev-
els of noise will be sufficient to produce a noise-sustained
structure, assuming the system is sufficiently long [2-4].
A very interesting question asked in Ref. [15] is whether
or not the noise-sustained structure seen in the Taylor-
Couette experiments is of thermal origin. This is an intri-
guing and important question since an affirmative answer
would imply that further efforts at noise reduction—
short of decreasing the temperature of the system—
would have no effect on the flow. Also it could have im-
portant consequences for related systems such as
Rayleigh-Bénard convection with through-flow [16,17].
Based on numerical solution of the CGL equation it was
argued in Ref. [15] that thermal noise may play an im-
portant role in the Taylor-Couette experiments. Howev-
er, as stressed by the authors, their result provides only
an order-of-magnitude estimate since the noise term used
in the CGL simulation was not derived rigorously from
the Navier-Stokes equations. We note that thermal noise
is also believed to be important in recent experiments in
binary fluid convection [10].

In this paper we will first study, without reference to
any particular physical systems, the CGL equation with a
noise term that is &-function-correlated in space and
time. We will present analytic results for this system un-
der conditions when the system is convectively unstable.
Since the CGL equation is a generic equation, these re-
sults will be applicable to a wide variety of physical sys-
tems.

Next we will focus attention on the particular system
mentioned previously (i.e., Taylor-Couette flow with an
axial through-flow) and rigorously derive the noise term
for the CGL equation, as well as the coefficients of the
CGL equation (including the nonlinear term). Based on
these results, it appears that the noise-sustained structure
seen in the experiments is not of thermal origin. Howev-
er, even if the structure in these experiments is not
thermal in origin, it seems likely that experiments can be
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designed in which structure is sustained by thermal noise
(i.e., molecular motion), considering the fact that the
noise in these experiments is already so extremely small.

The complex Ginzburg-Landau equation [18-20] with a
noise term is

A,=eaA—vA,+bA,, —clA|*A+E, (1)

where a, b, and c are in general complex coefficients, v is
the group velocity, e=R —R_, measures the ‘“distance”
above onset of the instability (where R and R, are the
control parameter and critical value of that parameter,
respectively), £(x,?) is a complex thermal noise term, and
A (x,?) is the slowly varying complex amplitude of a
plane-wave solution at criticality. The conditions
satisfied by & are ( &(x,1)E*(x',t')) =0 6(x —x')8(t —1t'),
(&(x,t)E(x',t'))=0, and (&(x,t)) =0, where * refers to
the complex conjugate and & is the Dirac delta
function. These conditions will be satisfied
if (&, (x,1)E,(x",t")) ={ & (x,t)E;(x",t')) =(02/2)8(x
—x)8(t —t'), (E(x,0)€;(x',t'))=0, and (&,(x,1))
= (§,~(x,t) ) =0, where the subscripts r and i refer to the
J

real and imaginary parts, respectively. As shown by Gra-
ham [20], the fluid equations in the presence of thermal
noise and near onset of the instability may be reduced to
Eq. (1).

Assuming that | 4| is sufficiently small so that the non-
linear term may be neglected, the covariance function
K(x,x',t)=( A(x,t)A*(x',t)) (where the angle brackets
signify the expectation value) satisfies the following equa-
tion:

K,=2ea,K —v(K,+K,)+bK,, +b*K,...+0%8(x —x') .
(2)

This equation was derived by discretizing the linear Eq.
(1) in space, applying the results for a set of coupled ordi-
nary differential equations [21], and then returning to the
continuous spatial limit.

Assuming that the system is convectively unstable, i.e.,
0<ea, <v’b,/(4]b|?) [2,3], the stationary solution of Eq.
(2) for the semi-infinite interval [0, ) with boundary
conditions K (x,0,t)=K (0,x’,¢t)=0is

202 ap*)] [ @ w ., sin(kx )sin(k’x") 1 1
K(x,x')= Y e[vx/(2b)+vx /(2b7)] dk dk’ _
Ls fo fo a’+bk*>+b*k? | Y +(k—k'?  y +(k+k')?

, 3)

where y =vb, /|b|? and a=[v?b, /(2|b|?)—2ea,]'/2. After taking x =x', making a change of variables, and performing

one of the integrations, Eq. (3) may be reduced to

K(x,x)= 15|

o2 VXfwd cos(sx)—exp[ —(|b] /br)(s2+n*)!/2x Jcosh[(b; /b, )sx ]
e s
Y (s2+72) 2 (s2+92)

) )

where 7=(1/2b, /|b|)a. This equation gives the variance K (x,x)={| 4 (x,#)|?) at the point x. For large x Eq. (4) may

be written as the asymptotic series

2
K (x,%)~ oy 1 1

er=mx n BT(I+1)

where the B, are the coefficients in the Taylor expansion

Vamlbl |y =n?  y*+((6/b,m | Vax

-, (5)
1=0 Bol"(—;-)x

A/VIF (21— (g + WP — (/173 +s 1 (@ — (1/[7*+s_ (@)= 3 Big" ,

where

s1(q)=(b; /b,)(n+q)x(|b|/b,)V q(20+q) ,

where I'(1)=V'7 and (I +1)=(—1)I'(I—1), T being
the gamma function. The coefficient of x in the exponen-
tial, ¥ —1, is precisely twice the spatial growth rate of the
amplitude of the most rapidly growing mode [2,3] as one
would expect. Although this expression for the variance
may look somewhat formidable, note that the leading
term in the asymptotic series is given simply by replacing
the sum in Eq. (5) by 1 and, as we shall see, this may be
all that is necessary in many cases. Another feature that
should be noted is that the variance does not increase
purely exponentially in space for large x, but rather as
exp[(y —n)x]/Vx.

We now focus attention on Taylor-Couette flow with
an axial through-flow. This system consists of two con-
centric cylinders with inner and outer radii ; and r,, re-
spectively, with the inner cylinder rotating with velocity
v;, and with an imposed through-flow in the axial direc-
tion. The radial, azimuthal, and axial coordinates are

=0

[
denoted by (r,6,x), respectively. In the parameter regime
of interest, the flow will be axisymmetric and all deriva-
tives with respect to 6 will vanish. To derive the CGL
equation the Navier-Stokes and continuity equations for
the deviation of the velocity and pressure about the sta-
tionary background flow are written in cylindrical coordi-
nates and the velocity, distance, time, and pressure are
scaled with v/d, d, d*/v, and v?/d?, respectively, where
d is the gap distance between the cylinders and v is the
kinematic viscosity. There are three independent param-
eters for this system: (1) the scaled inner cylinder velocity
or azimuthal Reynolds number Re,,=v;d/v, (2) the
scaled average axial velocity of the stationary back-
ground flow or axial Reynolds number Re,,= Wd /v, and
(3) the scaled inner cylinder radius r;/d, which may be
written in terms of the radius ratio r,/r; as
ri/d=1/[(r,/r;)—1].

As Re,, is gradually increased for a given Re,, and
r;/d, at Re,, ., the critical value of Re,,, the stationary
background flow becomes unstable. We define € that ap-
pears in the CGL equation (1) as ée=Re,,—Re,, .. This
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measures the “distance” above onset of the instability
and is used as the expansion parameter in deriving the
CGL equation. The linear coefficients a, v, and b are par-
ticularly easy to derive, being determined from the linear
stability problem. Assuming a solution of the linearized
fluid equations of the form exp[A(k,Re,,)t +ikx ], where
t and x are the scaled time and axial position, respective-
ly, these coefficients are given by a=09A/dRe,,, v
=—2aA,; /3k, and b= —13?A/0k?, where the derivatives
are evaluated at criticality (i.e., at k. and Re,, .). The
critical values of k and Re,, are determined from
0A,/0k =0 and A, =0. The calculation of the coefficient
of the nonlinear term, ¢, is much more involved and we
only give a numerical value in this paper. For details of
the derivation of coefficients of the CGL equation, the
reader is referred to, for example, Refs. [18-20]. In
terms of the amplitude A4 appearing in the CGL
equation (1), the scaled radial, azimuthal, and axial fluid
velocities and pressure are given by (u,v,w,p)

J

(S'%r,6,x,08"™(r',6",x",¢'))

=A(x,t)U,V, W,Pexplik,x —iwt)+c.c., where U(r),
V(r), W(r), and P(r) are the radial eigenfunctions of the
linear stability problem at criticality, k, and , are the
critical wave number and frequency, respectively, and
c.c. stands for the complex conjugate. Chebyshev poly-
nomials were used in the radial direction giving highly
accurate results.

In the presence of thermal noise, noise terms
N% (i =r,6,x) must be added to the Navier-Stokes equa-
tions for the radial, azimuthal, and axial velocity com-
ponents, u, v, and w, respectively. From Landau and
Lifshitz [22] we find that for thermal noise (writing the
noise term in cylindrical coordinates)

N(i)=(l/r)[(rs(ri))r+SgOi)+(rs(xi))x +B(i)]
(i=r,8,x), (6)

where B{'=(—5%) 579 0), and where the correlations
between the random components of the stress tensor (in
scaled units) are

=[2kT /(v?pd)][8'Pgkm 4 §limgkD 4 (£ — 2)5lIgIm) 15 —p')(1/7)8(0—6')8(x —x")8(t —t') , ()

where 8/ is the Kronecker delta function (i, j =r,0,x), k is Boltzmann’s constant, T is the absolute temperature of the
fluid, p is the fluid density, and § is the ratio of the second (or bulk) viscosity to the usual viscosity. Expanding the ve-
locities and random components of the stress tensor in e'™?, where m corresponds to the azimuthal mode number, and
noting that the m =0 mode dominates, we find 8(6—6')=1/(27), in addition to all the derivatives with respect to 6

vanishing.
To find the correlation of the noise term we followed Graham [20]. The correlation of the noise term is found to be
(Ex,DE*(x",1')) =[Q/2m|C|))18(x —x")8(t =t (44O +(E=OI, +(E— ), +1,] , it
where

1= [ara/m(l(1/nUt—=@ut/an?+11/nU'?), 1,= [dara/me2iwi?,

Iy= [ar/n[|(1/nUT=(@u'/dn+ik, W+ (1 /nUT =ik w2 —|2/n U —@Ut 7an)2]
L= [dr(/mKAVIP+I2/mV =@V anP+1(/mw'—@w' /dn+ik U2, c= [arnutu+viv+wiw)

where Q =kT /(pd+?) is a dimensionless number related
to the thermal noise level and where U T(r), VT(r), and
W'(r) are the radial eigenfunctions of the adjoint stabili-
ty problem at criticality.

Numerically evaluating the noise term for a radius ra-
tio of r;/r,=0.7376 which corresponds to the experi-
ments of Refs. [13, 15], and for an axial Reynolds num-
ber of Re, =3, gives (££*)=0.32023Q8(x —x')8(¢
—t'). For these experiments we also have d =0.6769 cm,
p=1.04 g/cm?, v=0.0158 cm?/s, and T=293 K which
gives 0 =2.30X107!°, The eigenfunctions were normal-
ized such that |U(r,)|=1, where r, =(r;+r,)/2. Speci-
fying how the eigenfunctions are normalized is essential
when evaluating the noise correlation and the nonlinear
coefficient, since the values of these quantities depend on
the normalization of the eigenfunctions. The numerical
coefficient of the noise correlation is rather insensitive to
the value of Re,, for small Re,,, being, for example,
0.317 19 for Re,,=0. We note that the noise correlation
is independent of &, which is probably a reflection of the
incompressibility of the flow. This is fortunate since the
second viscosity is unknown for liquids at low frequencies
[23].

[

Evaluating the linear coefficients for Re,, =3 gives
a=0.31448+6.806X 1073, v=3.69024, and
b=1.91052+0.14070i. The nonlinear coefficient is
found to be ¢=0.45127+4.444X107 3. We also find
that k =3.13713, Re,, ,=84.3035, and o,=11.0294.
The real parts of the coefficients a, b, and ¢, and k, and
Re,, ., are found to be rather insensitive to the value of
Re,, for small Re,,, being, for example, a,=0.31372,
b,=1.91094, ¢,=0.45192, k.=3.13620, and
Re,, . =84.0148 for Re,,=0. The group velocity, the
imaginary parts of the coefficients, and the critical fre-
quency are O for Re,,=0 and are approximately propor-
tional to Re,, for small Re,,.

Figure 1 (solid line) shows the root-mean-square (rms)
average of the radial velocity at »=r, as a function of x
from a numerical simulation of the CGL equation (1) us-
ing the above values for the coefficients and thermal noise
term and using €=4.668. The rms average of the radial
velocity at r=r, is related to the rms average of | 4| by
Culry,x,t?)12=v2(| A(x,1)|?)!/? by virtue of the nor-
malization taken for the radial eigenfunctions [see discus-
sion following Eq. (8)]. As can be seen, the noise is spa-
tially amplified resulting in a noise-sustained structure.
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FIG. 1. rms average of the radial velocity at a radius midway
between the cylinders from a numerical simulation of the CGL
equation (solid line) and from the leading term (i.e., n =0) in the
asymptotic series Eq. (5) (dashed line).

In the absence of a continuous source of noise, the solu-
tion is zero everywhere. Figure 1 (dashed line) shows
(u?)!/? at r=r, as given by the leading term in Eq. (5).
As can be seen, the agreement is excellent between the
analytic result and the numerical solution of the CGL
equation for small | A|. In order to see the range of x for
which Eq. (5) is valid, Fig. 2 shows In({#?)!/?) from the
numerical simulation (solid line), from the leading term in
Eq. (5) (dashed line), and from Eq. (5) keeping three terms
in the asymptotic series (i.e., n =2) (dotted line). Al-
though the rms average as given by the leading term in
Eq. (5) deviates somewhat from the numerical solution
for smaller x, the rms average as given by the numerical
solution and the rms average as given by Eq. (5) with
n =2 show excellent agreement along most of the curve.
Referring to Fig. 1 we see that the value of x at half max-
imum is about 26.5. For the experiments of Refs. [13,
15], this distance is about 21 [24]. Referring to Eq. (5)
and noting that (y —7)/2=0.5625, this implies that the
noise amplitude in the experiments is about
(21/26.5)"4exp[0.5625X(26.5—21)]~20 times thermal
noise.

In conclusion, we have studied the complex Ginzburg-
Landau equation with a thermal noise term under condi-
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FIG. 2. Natural logarithm of the rms average of the radial ve-
locity at a radius midway between the cylinders from a numeri-
cal simulation of the CGL equation (solid line), from the asymp-
totic series Eq. (5) for n =0 (dashed line), and from the asymp-
totic series Eq. (5) for n =2 (dotted line).

tions when the system is convectively unstable. Analytic
results were derived for the variance. Since the CGL
equation is a generic equation, and considering the facts
that noise is an element common to all physical systems
and all systems with nonzero group velocity are convec-
tively unstable at onset of the instability, these results will
be applicable to a wide variety of physical systems. The
coefficients and thermal noise term for the CGL equation
were determined for Taylor-Couette flow with an axial
through-flow and comparison was made to experiment.
Although the effective noise level in the experiments of
Refs. [13,15] appears not to be thermal in origin, the
noise level is nonetheless extremely small, being roughly
an order of magnitude larger than thermal noise. There-
fore, even if the structures in the experiments are not
thermally sustained, it seems likely that an experiment
can be designed in which thermally sustained structure
does exist.
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